Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.905
Filtrar
1.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372965

RESUMO

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Assuntos
Cardiomiopatias , Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Lipidômica , Doenças Mitocondriais , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares , Doenças do Sistema Nervoso , Rabdomiólise , Humanos , Doenças Mitocondriais/diagnóstico , Carnitina , Cisteamina , Lipídeos
2.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(2): 172-179, 2024 Feb 24.
Artigo em Chinês | MEDLINE | ID: mdl-38326069

RESUMO

Objective: To explore the clinical manifestations and genotype of an infant with hyperuricemia, pulmonary hypertension, renal failure in infancy, and alkalosis syndrome (HUPRAS). Methods: Clinical data of the patient were collected. Peripheral blood samples from the patient and his parents were acquainted for whole exome sequencing. The filtrated variants were verified by Sanger sequencing. The pathogenicity of the variants was predicted by bioinformatic tools. Results: The patient is a male infant of 6 months old, carrying two missense variants in the SARS2 allele: a paternal inherited c.1205G>A (p. Arg402His) and a maternal inherited c.680G>A (p. Arg227Gln). The two variants were in extremely low population frequencies. The pathogenetic prediction tools categorized them as deleterious. Arg402 and Arg227 were highly conserved in evolution. The variants led to changes in the hydrogen bonds and hydrophobicity of seryl-tRNA synthetase encoded by SARS2. Conclusions: c.1205G>A (p. Arg402His) and c.680G>A (p. Arg227Gln) are the possible causative variants of the HUPRA syndrome.


Assuntos
COVID-19 , Hipertensão Pulmonar , Síndrome de Kearns-Sayre , Miopatias Mitocondriais , Humanos , Lactente , Masculino , Mutação , Hipertensão Pulmonar/genética , Mutação de Sentido Incorreto , Genótipo
3.
Neurotherapeutics ; 21(1): e00304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241155

RESUMO

This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.


Assuntos
Doenças Mitocondriais , Miopatias Mitocondriais , Humanos , Criança , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/terapia , Mitocôndrias , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia
4.
Ophthalmic Genet ; 45(2): 140-146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288966

RESUMO

OBJECTIVE: To develop an updated staging system for long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency (LCHADD) chorioretinopathy based on contemporary multimodal imaging and electrophysiology. METHODS: We evaluated forty cases of patients with genetically confirmed LCHADD or trifunctional protein deficiency (TFPD) enrolled in a prospective natural history study. Wide-field fundus photographs, fundus autofluorescence (FAF), optical coherence tomography (OCT), and full-field electroretinogram (ffERG) were reviewed and graded for severity. RESULTS: Two independent experts first graded fundus photos and electrophysiology to classify the stage of chorioretinopathy based upon an existing published system. With newer imaging modalities and improved electrophysiology, many patients did not fit cleanly into a single traditional staging group. Therefore, we developed a novel staging system that better delineated the progression of LCHADD retinopathy. We maintained the four previous delineated stages but created substages A and B in stages 2 to 3 to achieve better differentiation. DISCUSSION: Previous staging systems of LCHADD chorioretinopathy relied on only on the assessment of standard 30 to 45-degree fundus photographs, visual acuity, fluorescein angiography (FA), and ffERG. Advances in recordings of ffERG and multimodal imaging with wider fields of view, allow better assessment of retinal changes. Following these advanced assessments, seven patients did not fit neatly into the original classification system and were therefore recategorized under the new proposed system. CONCLUSION: The new proposed staging system improves the classification of LCHADD chorioretinopathy, with the potential to lead to a deeper understanding of the disease's progression and serve as a more reliable reference point for future therapeutic research.


Assuntos
Cardiomiopatias , Doenças da Coroide , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Doenças Retinianas , Rabdomiólise , Humanos , Estudos Prospectivos , Doenças Retinianas/diagnóstico , Retina/metabolismo , Tomografia de Coerência Óptica , Angiofluoresceinografia/métodos
5.
Ann Clin Transl Neurol ; 11(4): 883-898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263760

RESUMO

OBJECTIVE: This study aims to elucidate the long-term benefit of newborn screening (NBS) for individuals with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiency, inherited metabolic diseases included in NBS programs worldwide. METHODS: German national multicenter study of individuals with confirmed LCHAD/MTP deficiency identified by NBS between 1999 and 2020 or selective metabolic screening. Analyses focused on NBS results, confirmatory diagnostics, and long-term clinical outcomes. RESULTS: Sixty-seven individuals with LCHAD/MTP deficiency were included in the study, thereof 54 identified by NBS. All screened individuals with LCHAD deficiency survived, but four with MTP deficiency (14.8%) died during the study period. Despite NBS and early treatment neonatal decompensations (28%), symptomatic disease course (94%), later metabolic decompensations (80%), cardiomyopathy (28%), myopathy (82%), hepatopathy (32%), retinopathy (17%), and/or neuropathy (22%) occurred. Hospitalization rates were high (up to a mean of 2.4 times/year). Disease courses in screened individuals with LCHAD and MTP deficiency were similar except for neuropathy, occurring earlier in individuals with MTP deficiency (median 3.9 vs. 11.4 years; p = 0.0447). Achievement of dietary goals decreased with age, from 75% in the first year of life to 12% at age 10, and consensus group recommendations on dietary management were often not achieved. INTERPRETATION: While NBS and early treatment result in improved (neonatal) survival, they cannot reliably prevent long-term morbidity in screened individuals with LCHAD/MTP deficiency, highlighting the urgent need of better therapeutic strategies and the development of disease course-altering treatment.


Assuntos
Cardiomiopatias , Erros Inatos do Metabolismo Lipídico , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças do Sistema Nervoso , Rabdomiólise , Recém-Nascido , Humanos , Criança , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/metabolismo , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/terapia , Erros Inatos do Metabolismo Lipídico/metabolismo , Proteína Mitocondrial Trifuncional/metabolismo , Ácidos Graxos/metabolismo
6.
Biochem J ; 480(21): 1767-1789, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965929

RESUMO

Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.


Assuntos
Miopatias Mitocondriais , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Renovação Mitocondrial , Biologia
7.
J Am Soc Nephrol ; 34(11): 1875-1888, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678265

RESUMO

SIGNIFICANCE STATEMENT: Several recent studies identified mitochondrial mutations in patients with Gitelman or Fanconi syndrome. Mitochondrial cytopathies are generally not considered in the diagnostic workup of patients with electrolyte disorders. In this systematic review, we investigated the presence of electrolyte disorders in patients with mitochondrial cytopathies to determine the relevance of mitochondrial mutation screening in this population. Our analysis demonstrates that electrolyte disorders are commonly reported in mitochondrial cytopathies, often as presenting symptoms. Consequently, more clinical attention should be raised for mitochondrial disease as cause for disturbances in electrolyte homeostasis. Further prospective cohort studies are required to determine the exact prevalence of electrolyte disorders in mitochondrial cytopathies. BACKGROUND: Electrolyte reabsorption in the kidney has a high energy demand. Proximal and distal tubular epithelial cells have a high mitochondrial density for energy release. Recently, electrolyte disorders have been reported as the primary presentation of some mitochondrial cytopathies. However, the prevalence and the pathophysiology of electrolyte disturbances in mitochondrial disease are unknown. Therefore, we systematically investigated electrolyte disorders in patients with mitochondrial cytopathies. METHODS: We searched PubMed, Embase, and Google Scholar for articles on genetically confirmed mitochondrial disease in patients for whom at least one electrolyte is reported. Patients with a known second genetic anomaly were excluded. We evaluated 214 case series and reports (362 patients) as well as nine observational studies. Joanna Briggs Institute criteria were used to evaluate the quality of included studies. RESULTS: Of 362 reported patients, 289 had an electrolyte disorder, with it being the presenting or main symptom in 38 patients. The average number of different electrolyte abnormalities per patient ranged from 2.4 to 1.0, depending on genotype. Patients with mitochondrial DNA structural variants seemed most affected. Reported pathophysiologic mechanisms included renal tubulopathies and hormonal, gastrointestinal, and iatrogenic causes. CONCLUSIONS: Mitochondrial diseases should be considered in the evaluation of unexplained electrolyte disorders. Furthermore, clinicians should be aware of electrolyte abnormalities in patients with mitochondrial disease.


Assuntos
Síndrome de Kearns-Sayre , Doenças Mitocondriais , Miopatias Mitocondriais , Desequilíbrio Hidroeletrolítico , Humanos , Miopatias Mitocondriais/genética , Síndrome de Kearns-Sayre/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Mitocôndrias , DNA Mitocondrial/genética
8.
BMC Cardiovasc Disord ; 23(1): 464, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715114

RESUMO

BACKGROUND: Mitochondrial myopathies (MMs) are a group of multi-system diseases caused by abnormalities in mitochondrial DNA (mtDNA) or mutations of nuclear DNA (nDNA). The diagnosis of mitochondrial myopathy (MM) is reliant on the combination of history and physical examination, muscle biopsy, histochemical studies, and next-generation sequencing. Patients with MMs have diverse clinical manifestations. In the contemporary literature, there is a paucity of reports on cardiac structure and function in this rare disease. We report a Chinese man with MM accompanied with both acute right heart failure and left ventricular hypertrophy. CASE PRESENTATION: A 49-year-old man presented with clinical features suggestive of MM, i.e., ophthalmoparesis, weakness of the pharyngeal and extremity muscles, and respiratory muscles which gradually progressed to respiratory insufficiency. He had a family history of mitochondrial myopathy. He had increased levels of serum creatine kinase and lactate. Muscle biopsy of left lateral thigh revealed 8% ragged red fibers (RRF) and 42% COX-negative fibers. Gene sequencing revealed a novel heterozygote TK2 variant (NM_001172644: c.584T>C, p.Leu195Pro) and another heterozygous variant (NM_004614.4:c.156+958G>A; rs1965661603) in the intron of TK2 gene. Based on these findings, we diagnosed the patient as a case of MM. Echocardiography revealed right heart enlargement, pulmonary hypertension, left ventricular hypertrophy, and thickening of the main pulmonary artery and its branches. The patient received non-invasive ventilation and coenzyme Q10 (CoQ10). The cardiac structure and function were restored at 1-month follow-up. CONCLUSIONS: This is the first report of reversible cardiac function impairment and left ventricular hypertrophy in a case of adult-onset MM, nocturnal hypoxia is a potential mechanism for left ventricular hypertrophy in patients with MM.


Assuntos
Hipertrofia Ventricular Esquerda , Miopatias Mitocondriais , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , População do Leste Asiático , Coração , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Cardiomegalia
9.
J Prim Care Community Health ; 14: 21501319231193875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646180

RESUMO

Primary mitochondrial myopathies (PMM) are rare disorders with diverse and progressive symptom presentations that cause a substantial, detrimental impact on the quality of life of patients and their caregivers. The burden of symptoms is compounded by their visibility and their unpredictable, progressive nature, leading to a sense of social stigmatization, limited autonomy, social isolation, and grief. There is also a lack of awareness and expertise in the medical community, which presents huge obstacles to diagnosis and provision of coordinated multidisciplinary care for these patients, along with a lack of disease-modifying treatments. The present commentary serves to raise awareness of the challenges faced by patients with PMM and their caregivers in their own words, including diagnostic delays, the burden of disease, and the need for further trials to develop disease-modifying treatments and improved understanding of the disease course. We also provide commentary on considerations for clinical practice, including the need for holistic care and multidisciplinary care teams, details of common 'red flag' symptoms, proposed diagnostic approaches, and suggested descriptions of multisystemic symptoms for physician-patient dialogue. In addition, we highlight the role patient advocacy and support groups play in supporting patients and providing access to reliable, up-to-date information and educational resources on these rare diseases.


Assuntos
Miopatias Mitocondriais , Qualidade de Vida , Humanos , Miopatias Mitocondriais/terapia , Cuidadores , Efeitos Psicossociais da Doença , Diagnóstico Tardio
10.
Am J Med Genet A ; 191(12): 2843-2849, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37565517

RESUMO

Mitochondrial myopathy is a severe metabolic myopathy related to nuclear or mitochondrial DNA dysfunction. We present a rare case of mitochondrial myopathy, presented with multiple episodes of proximal muscle weakness, lactic acidosis, and severe rhabdomyolysis (CPK 319,990 U/L, lactic acid 22.31 mmol/L, and GFR 3.82 mL/min/1.73m2 ). She was hospitalized in the pediatric intensive care unit due to acute kidney injury, elevated blood pressure, and deterioration of respiratory and cardiac function. Investigation for inherited metabolic disorders showed elevated levels of ammonia, lactic acid to pyruvic acid ratio, and urine ketone bodies. Exome sequencing detected a homozygous pathogenic variant in FDX2 (ENST00000541276:p.Met4Leu/c.10A > T) and a heterozygous variant of uncertain significance in MSTO1 (ENST00000538143:p.Leu137Pro/c.410 T > C). After Sanger sequencing, the p.Met4Leu pathogenic variant in FDX2 (ENST00000541276:p.Met4Leu/c.10A > T) was identified in a heterozygous state in both her parents and sister. Recently, pathogenic variants in the FDX2 gene have been associated with mitochondrial myopathy, lactic acidosis, optic atrophy, and leukoencephalopathy. Only four reports of FDX2-related rhabdomyolysis have been described before, but none of the previous patients had hyperammonemia. This is a rare case of severe mitochondrial myopathy in a pediatric patient related to a pathogenic FDX2 variant, suggesting the need for genetic analysis of the FDX2 gene in cases of suspicion of mitochondrial myopathies.


Assuntos
Acidose Láctica , Miopatias Mitocondriais , Doenças Musculares , Rabdomiólise , Humanos , Feminino , Criança , Acidose Láctica/diagnóstico , Acidose Láctica/genética , Ferredoxinas/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/complicações , Rabdomiólise/diagnóstico , Rabdomiólise/genética , Miopatias Mitocondriais/genética , Mutação , Ácido Láctico , Proteínas do Citoesqueleto/genética , Proteínas de Ciclo Celular/genética
11.
Neurology ; 101(3): e238-e252, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37268435

RESUMO

BACKGROUND AND OBJECTIVES: Primary mitochondrial myopathies (PMMs) encompass a group of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely affecting physical function, exercise capacity, and quality of life (QoL). Current PMM standards of care address symptoms, with limited clinical impact, constituting a significant therapeutic unmet need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in participants with genetically confirmed PMM. METHODS: After screening, eligible participants were randomized 1:1 to receive either 24 weeks of elamipretide at a dose of 40 mg/d or placebo subcutaneously. Primary efficacy endpoints included change from baseline to week 24 on the distance walked on the 6-minute walk test (6MWT) and total fatigue on the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA). Secondary endpoints included most bothersome symptom score on the PMMSA, NeuroQoL Fatigue Short-Form scores, and the patient global impression and clinician global impression of PMM symptoms. RESULTS: Participants (N = 218) were randomized (n = 109 elamipretide; n = 109 placebo). The m0ean age was 45.6 years (64% women; 94% White). Most of the participants (n = 162 [74%]) had mitochondrial DNA (mtDNA) alteration, with the remainder having nuclear DNA (nDNA) defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was tiredness during activities (28.9%). At baseline, the mean distance walked on the 6MWT was 336.7 ± 81.2 meters, the mean score for total fatigue on the PMMSA was 10.6 ± 2.5, and the mean T score for the Neuro-QoL Fatigue Short-Form was 54.7 ± 7.5. The study did not meet its primary endpoints assessing changes in the 6MWT and PMMSA total fatigue score (TFS). Between the participants receiving elamipretide and those receiving placebo, the difference in the least squares mean (SE) from baseline to week 24 on distance walked on the 6MWT was -3.2 (95% CI -18.7 to 12.3; p = 0.69) meters, and on the PMMSA, the total fatigue score was -0.07 (95% CI -0.10 to 0.26; p = 0.37). Elamipretide treatment was well-tolerated with most adverse events being mild to moderate in severity. DISCUSSION: Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that subcutaneous elamipretide is well-tolerated. TRIAL REGISTRATION INFORMATION: Trial registered with clinicaltrials.gov, Clinical Trials Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017. CLINICALTRIALS: gov/ct2/show/NCT03323749?term = elamipretide&draw = 2&rank = 9. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that elamipretide does not improve the 6MWT or fatigue at 24 weeks compared with placebo in patients with primary mitochondrial myopathy.


Assuntos
Miopatias Mitocondriais , Qualidade de Vida , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Proteína 1 de Superfície de Merozoito/uso terapêutico , Miopatias Mitocondriais/tratamento farmacológico , Fadiga , Método Duplo-Cego , Resultado do Tratamento
12.
J Prim Care Community Health ; 14: 21501319231172697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162197

RESUMO

Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.


Assuntos
Miopatias Mitocondriais , Miocardite , Oftalmoplegia Externa Progressiva Crônica , Adulto , Masculino , Humanos , Adulto Jovem , Miocardite/patologia , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/patologia , Músculo Esquelético/patologia , Oftalmoplegia Externa Progressiva Crônica/diagnóstico , Oftalmoplegia Externa Progressiva Crônica/patologia , Extremidade Inferior/patologia
13.
EMBO Mol Med ; 15(7): e16951, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37222423

RESUMO

Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy-dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation-like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed-forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention.


Assuntos
Doenças Mitocondriais , Miopatias Mitocondriais , Camundongos , Animais , Humanos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Lipídeos
14.
Muscle Nerve ; 68(3): 250-256, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226557

RESUMO

Metabolic myopathies are a set of rare inborn errors of metabolism leading to disruption in energy production. Relevant to skeletal muscle, glycogen storage disease and fatty acid oxidation defects can lead to exercise intolerance, rhabdomyolysis, and weakness in children and adults, distinct from the severe forms that involve multiple-organ systems. These nonspecific, dynamic symptoms along with conditions that mimic metabolic myopathies can make diagnosis challenging. Clinicians can shorten the time to diagnosis by recognizing the typical clinical phenotypes and performing next generation sequencing. With improved access and affordability of molecular testing, clinicians need to be well-versed in resolving variants of uncertain significance relevant to metabolic myopathies. Once identified, patients can improve quality of life, safely engage in exercise, and reduce episodes of rhabdomyolysis by modifying diet and lifestyle habits.


Assuntos
Erros Inatos do Metabolismo , Miopatias Mitocondriais , Doenças Musculares , Rabdomiólise , Humanos , Qualidade de Vida , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/terapia , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/metabolismo , Músculo Esquelético/metabolismo , Miopatias Mitocondriais/diagnóstico
15.
BMC Pulm Med ; 23(1): 104, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991405

RESUMO

BACKGROUND: Primary muscular disorders (metabolic myopathies, including mitochondrial disorders) are a rare cause of dyspnea. We report a case of dyspnea caused by a mitochondrial disorder with a pattern of clinical findings that can be classified in the known pathologies of mitochondrial deletion syndrome. CASE PRESENTATION: The patient presented to us at 29 years of age, having had tachycardia, dyspnea, and functional impairment since childhood. She had been diagnosed with bronchial asthma and mild left ventricular hypertrophy and treated accordingly, but her symptoms had worsened. After more than 20 years of progressive physical and social limitations was a mitochondrial disease suspected in the exercise testing. We performed cardiopulmonary exercise testing (CPET) with right heart catheterization showed typical signs of mitochondrial myopathy. Genetic testing confirmed the presence of a ~ 13 kb deletion in mitochondrial DNA from the muscle. The patient was treated with dietary supplements for 1 year. In the course of time, the patient gave birth to a healthy child, which is developing normally. CONCLUSION: CPET and lung function data over 5 years demonstrated stable disease. We conclude that CPET and lung function analysis should be used consistently to evaluate the cause of dyspnea and for long-term observation.


Assuntos
Dispneia , Miopatias Mitocondriais , Humanos , Feminino , Criança , Teste de Esforço , Miopatias Mitocondriais/complicações , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Mitocôndrias , Síndrome
16.
J Biol Chem ; 299(3): 103002, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773803

RESUMO

Plasma thymidine levels in rodents are higher than in other mammals including humans, possibly due to a different pattern and lower level of thymidine phosphorylase expression. Here, we generated a novel knock-in (KI) mouse line with high systemic expression of human thymidine phosphorylase to investigate this difference in nucleotide metabolism in rodents. The KI mice showed growth retardation around weaning and died by 4 weeks of age with a decrease in plasma thymidine level compared with the litter-control WT mice. These phenotypes were completely or partially rescued by administration of the thymidine phosphorylase inhibitor 5-chloro-6-(2-iminopyrrolidin-1-yl) methyl-2,4(1H,3H)-pyrimidinedione hydrochloride or thymidine, respectively. Interestingly, when thymidine phosphorylase inhibitor administration was discontinued in adult animals, KI mice showed deteriorated grip strength and locomotor activity, decreased bodyweight, and subsequent hind-limb paralysis. Upon histological analyses, we observed axonal degeneration in the spinal cord, muscular atrophy with morphologically abnormal mitochondria in quadriceps, retinal degeneration, and abnormality in the exocrine pancreas. Moreover, we detected mitochondrial DNA depletion in multiple tissues of KI mice. These results indicate that the KI mouse represents a new animal model for mitochondrial diseases and should be applicable for the study of differences in nucleotide metabolism between humans and mice.


Assuntos
Encefalomiopatias Mitocondriais , Miopatias Mitocondriais , Animais , Humanos , Camundongos , DNA Mitocondrial/metabolismo , Transtornos do Crescimento/genética , Mamíferos/metabolismo , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/patologia , Nucleotídeos , Timidina , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo
17.
J Clin Neuromuscul Dis ; 24(3): 140-146, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809201

RESUMO

OBJECTIVES: To provide an overview about the phenotype, genotype, treatment, and outcome of neuropathy, ataxia, and retinitis pigmentosa (NARP) syndrome. METHODS: Systematic review by application of appropriate search terms. RESULTS: NARP syndrome is a syndromic mitochondrial disorder due to pathogenic variants in MT-ATP6. The canonical phenotypic features of NARP syndrome include proximal muscle weakness, axonal neuropathy, cerebellar ataxia, and retinitis pigmentosa. Noncanonical phenotypic features in NARP include epilepsy, cerebral or cerebellar atrophy, optic atrophy, cognitive impairment, dementia, sleep apnea syndrome, hearing impairment, renal insufficiency, and diabetes. So far, 10 pathogenic variants in MT-ATP6 have been associated with NARP, NARP-like syndrome, or NARP/maternally inherited Leigh overlap syndrome. Most pathogenic MT-ATP6 variants are missense, but a few truncating pathogenic variants have been reported. The most common variant responsible for NARP is the transversion m.8993T>G. Only symptomatic treatment for NARP syndrome is available. In most of the cases, patients die prematurely. Patients with late-onset NARP survive longer. CONCLUSIONS: NARP is a rare, syndromic, monogenic mitochondrial disorder due to pathogenic variants in MT-ATP6. The nervous system and the eyes are most commonly affected. Although only symptomatic treatment is available, the outcome is usually fair.


Assuntos
Ataxia Cerebelar , Doenças Mitocondriais , Miopatias Mitocondriais , Retinite Pigmentosa , Humanos , Ataxia Cerebelar/complicações , Miopatias Mitocondriais/genética , Ataxia/complicações , Retinite Pigmentosa/complicações , Retinite Pigmentosa/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Mutação
18.
Clin Nucl Med ; 48(4): 359-360, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630887

RESUMO

ABSTRACT: An 18-year-old man presented with progressive exercise intolerance and muscle weakness for 1 year with recent acute exacerbation. Laboratory test demonstrated lactic acidosis. 18 F-FDG PET/CT was performed to exclude malignancy and showed generalized muscular hypermetabolism. Muscle biopsy combined with patient's history suggested mitochondrial myopathy. This report illustrates that mitochondrial myopathy may present as generalized muscular hypermetabolism on 18 F-FDG PET/CT and thus should be added to the differential diagnoses.


Assuntos
Miopatias Mitocondriais , Neoplasias , Masculino , Humanos , Adolescente , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons
19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(11): 1760-1768, 2023 Nov 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38432868

RESUMO

Mitochondrial myopathy is a group of multi-system diseases in which mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) defects lead to structural and functional dysfunction of mitochondria. The clinical manifestations of mitochondrial myopathy are complex and varied, and the testing for mtDNA and nDNA is not widely available, so misdiagnosis or missed diagnosis is common. Chronic progressive external ophthalmoplegia (CPEO) is a common type of mitochondrial myopathy, which is characterized by blepharoptosis. Here we report a 38-year-old female with mitochondrial myopathy presented with chronic numbness and weakness of the limbs, accompanied by blepharoptosis that was recently noticed. Laboratory and head magnetic resonance imaging (MRI) examinations showed no obvious abnormalities. Muscle and nerve biopsies showed characteristic ragged red fibers (RRFs) and large aggregates of denatured mitochondria. Testing for mtDNA and nDNA showed a known mutation c.2857C>T (p.R953C) and a novel variant c.2391G>C (p.M797I) in the polymerase gamma (POLG)gene, so the patient was diagnosed as mitochondrial myopathy. Clinicians should pay more attention to long-term unexplained skeletal muscle diseases with recent onset blepharoptosis. Histopathologic examination and genetic testing are of great value in the early diagnosis and therapeutic intervention.


Assuntos
Blefaroptose , Miopatias Mitocondriais , Oftalmoplegia Externa Progressiva Crônica , Feminino , Humanos , Adulto , Blefaroptose/diagnóstico , Blefaroptose/etiologia , Oftalmoplegia Externa Progressiva Crônica/diagnóstico , Oftalmoplegia Externa Progressiva Crônica/genética , DNA Mitocondrial/genética , Mitocôndrias
20.
Neurol India ; 71(6): 1192-1196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38174457

RESUMO

Objectives: Clinical spectrum of mitochondrial myopathy extends beyond chronic progressive external ophthalmoplegia (CPEO). While information on encephalomyopathies is abundant, clinical data on predominant myopathic presentation of mitochondrial disorders are lacking. Materials and Methods: Clinical, electrophysiological, biochemical, and follow-up data of patients with predominant myopathic presentation and muscle biopsy confirmed primary mitochondrial myopathy was obtained. We excluded known syndromes of mitochondrial cytopathies and encephalomyopathies. Results: Among 16 patients, 7 had CPEO, 4 had CPEO with limb-girdle muscle weakness (LGMW), and 5 had isolated LGMW. Systemic features included seizures with photosensitivity (n = 3), diabetes (n = 1), cardiomyopathy (n = 1), and sensorineural hearing loss (n = 1) and were more common in isolated LGMW. Elevated serum creatine kinase (CK) and lactate levels and electromyography (EMG) myopathic potentials were more frequent with LGMW. During follow-up, LGMW had more severe progression of weakness. Conclusion: We identified three subsets of mitochondrial myopathy with distinct clinical features and evolutionary patterns. Isolated LGMW was seen in 30% of patients and would represent severe end of the spectrum.


Assuntos
Síndrome de Kearns-Sayre , Miopatias Mitocondriais , Oftalmoplegia Externa Progressiva Crônica , Humanos , Miopatias Mitocondriais/diagnóstico , Eletromiografia , Biópsia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...